a2 United States Patent

Bhargava et al.

US009075993B2

US 9,075,993 B2
Jul. 7, 2015

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEM AND METHOD FOR SELECTIVELY
GROUPING AND MANAGING PROGRAM
FILES

(75) Inventors: Rishi Bhargava, Cupertino, CA (US);

David P. Reese, Jr., Sunnyvale, CA (US)
(73)

")

Assignee: McAfee, Inc., Santa Clara, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 1126 days.

@
(22)

Appl. No.: 13/012,138

Filed: Jan. 24, 2011

(65) Prior Publication Data

US 2013/0246423 Al Sep. 19, 2013

Int. CI.
GOGF 21/56
GOGF 1730
HO4L 29/06
USS. CL
CPC oo GOGF 21/56 (2013.01); GOG6F 17/30
(2013.01); HO4L 63/1433 (2013.01); HO4L
63/145 (2013.01)

(51)
(2013.01)
(2006.01)
(2006.01)

(52)

(58) Field of Classification Search
CPC ... GO6F 11/3688; GOG6F 17/24; GOG6F 17/273;
GOG6F 19/321; GOG6F 21/563; GOGF 2201/83;
GOG6F 11/22; GO6F 11/2273; GO6F 11/2294,
GOG6F 11/2736; GOGF 11/32; GOGF 19/12;
GOG6F 19/324; GOG6F 19/363; GOGF 21/56;
GOG6F 21/577;, GOGF 21/57;, GOGF 21/50;
HO4L 63/145
USPC ittt 707/737

See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS

4,688,169 A 8/1987 Joshi

300

4,982,430 A 1/1991 Frezza et al.

(Continued)

FOREIGN PATENT DOCUMENTS

EP 1482394 A2 12/2004
EP 2037 657 Al 3/2009
(Continued)
OTHER PUBLICATIONS

“Xen Architecture Overview,” Xen, dated Feb. 13, 2008, Version 1.2,
http://wiki.xensource.com/xenwiki/
XenArchitecture?action=AttachFile&do=get
&target=Xen+architecture_Q1+2008.pdf, printed Aug. 18, 2009 (9
pages).

(Continued)

Primary Examiner — Jason Liao
Assistant Examiner — Jesse P Frumkin
(74) Attorney, Agent, or Firm — Patent Capital Group

(57) ABSTRACT

A method in one embodiment includes determining a fre-
quency range corresponding to a subset of a plurality of
program files on a plurality of hosts in a network environ-
ment. The method also includes generating a first set of counts
including a first count that represents an aggregate amount of
program files in a first grouping of one or more program files
of'the subset, where each of the one or more program files of
the first grouping includes a first value of a primary attribute.
In specific embodiments, each program file is unknown. In
further embodiments, the primary attribute is one of a plural-
ity of file attributes provided in file metadata. Other specific
embodiments include either blocking or allowing execution
of each of the program files of the first grouping. More spe-
cific embodiments include determining a unique identifier
corresponding to at least one program file of the first group-
ing.

16 Claims, 10 Drawing Sheets

130K

UNKNOWN PROGRAM FILE FREQUENCY ACROSS ORGANIZATION

| B

127K

780 —

COUNT

520

260

104K +———

—— 182

304

0
100% - 80% 8
A 3027

0% - 60% 60% - 40%
PREVALENCE

40% - 20% 20% - 0%

CLICK ON ANY OF THE BARS TO FURTHER DRILL DOWN ON THE
UNKNOWN PROGRAM FILES WITH A SPECIFIC PREVALENCE RANGE




US 9,075,993 B2

Page 2
(56) References Cited 7,506,155 Bl 3/2009 Stewart et al.
7,506,170 B2 3/2009 Finnegan
U.S. PATENT DOCUMENTS 7,506,364 B2 3/2009 Vayman
7,546,333 B2 6/2009 Alon et al.
5,155,847 A 10/1992 Kirouac et al. 7,546,594 B2 6/2009 McGuire et al.
5222134 A 6/1993 Waite et al. 7,552,479 Bl 6/2009 Conover et al.
5390314 A 2/1995 Swanson 7,577,995 B2 82009 Chebolu et al.
5521.849 A 5/1996 Adelson et al. 7,603,552 Bl 10/2009 Sebes et al.
5,560,008 A 9/1996 Johnson et al. 7,607,170 B2 10/2009 Chesla
5,699,513 A 12/1997 Feigen et al. 7,657,599 B2 2/2010 Smith
5,778,226 A 7/1998 Adams et al. 7,669,195 Bl 2/2010 Qumei
5,778,349 A 7/1998 Okonogi 7,685,635 B2 3/2010 Vegaetal.
5787427 A 7/1998 Benantar et al. 7,698,744 B2 4/2010 Fanton et al.
5,842,017 A 11/1998 Hookway et al. 7,703,090 B2 4/2010 Napier et al.
5,907,709 A 5/1999 Cantey et al. 7,757,269 Bl 7/2010 Roy-Chowdhury et al.
5,907,860 A 5/1999 Garibay et al. 7,765,538 B2 7/2010 Zweifel et al.
5,926,832 A 7/1999 Wing et al. 7,783,735 Bl 8/2010 Sebes et al.
5,974,149 A 10/1999 Leppek 7,809,704 B2 10/2010 Surendran et al.
5987,610 A 11/1999 Franczek et al. 7818377 B2 10/2010 Whitney et al.
5987611 A 11/1999 Freund 7,823,148 B2 10/2010 Deshpande et al.
5,991,881 A 11/1999 Conklin et al. 7,836,504 B2 11/2010 Ray etal.
6,064,815 A 5/2000 Hohensee et al. 7,840,968 Bl 11/2010 Sharma et al.
6,073,142 A 6/2000 Geiger et al. 7,849,507 B1  12/2010 Bloch et al.
6,141,698 A 10/2000 Krishnan et al. 7,856,661 Bl  12/2010 Sebes et al.
6,192,401 Bl 2/2001 Modiri et al. 7,865,931 Bl 1/2011 Stone et al.
6.192.475 Bl 2/2001 Wallace 7,870,387 Bl 1/2011 Bhargava et al.
6256773 Bl 72001 Bowman-Amuah 7,873,955 Bl 1/2011 Sebes et al.
6.275.938 Bl /2001 Bond et al. 7,895,573 Bl 2/2011 Bhargava et al.
6321.267 Bl  11/2001 Donaldson 7,908,653 B2 3/2011 Brickell et al.
6338149 Bl 1/2002 Ciccone, Jr. et al. 7,937,334 B2 5/2011 Bonissone et al.
6,356,957 B2 3/2002 Sanchez, I et al. 7,937,455 B2 52011 Sahaetal.
6.393.465 B2 5/2002 TLeeds 7,966,659 Bl 6/2011 Wilkinson et al.
6.442.686 Bl 82002 McArdle ef al. 7,987,230 B2 7/2011 Sebes et al.
6,449,040 Bl 9/2002 Fujita 7,996,836 Bl 8/2011 McCorkendale et al.
6,453,468 Bl 9/2002 D’Souza 8,015,388 Bl 9/2011 Rihan et al.
6,460,050 B1  10/2002 Pace et al. 8,015,563 B2 9/2011 Araujo etal.
6,587,877 Bl 7/2003 Douglis et al. 8,195931 Bl 62012 Sharma et al.
6,611,925 Bl 8/2003 Spear 8,234,713 B2 7/2012 Roy-Chowdhury et al.
6,662,219 Bl 12/2003 Nishanov et al. 8,291,497 B1* 10/2012 Griffinetal. ............... 726/23
6,748,534 Bl 6/2004 Gryaznov et al. 8,306,988 B1* 11/2012 Jyotietal. ... 707/754
6.769.008 Bl 7/2004 Kumar et al. 8,307,437 B2 11/2012 Sebes et al.
6.769.115 Bl 7/2004 Oldman 8,321,932 B2  11/2012 Bhargava et al.
6795966 Bl  9/2004 Lim et al. 8,332,929 Bl 12/2012 Bhargava et al.
6,832,227 B2 12/2004 Seki et al. 8,341,627 B2 122012 Mohinder
6834301 Bl  12/2004 Hanchett 8,352,930 Bl 1/2013 Sebes et al.
6,847,993 Bl 1/2005 Novaes et al. 8,381,284 B2 2/2013 Dangetal.
6,907,600 B2 6/2005 Neiger etal. 8,495,060 B1*  7/2013 Chang .......cccccevivvinnnes 707/723
6,918,110 B2 7/2005 Hundt et al. 8,515,075 Bl 82013 Sarafetal.
6,930,985 Bl 8/2005 Rathi et al. 8,539,063 Bl 9/2013 Sharma et al.
6,934,755 Bl 8/2005 Saulpaugh et al. 8,544,003 B1 922013 Sawhney et al.
6,988,101 B2 1/2006 Ham et al. 8,549,003 B1  10/2013 Bhargava et al.
6,988,124 B2 1/2006 Douceur et al. 8,549,546 B2 10/2013 Sharma et al.
7,007,302 Bl 2/2006 Jagger et al. 8,555,404 B1  10/2013 Sebes et al.
7.010.796 Bl 3/2006 Strom et al. 8,561,051 B2  10/2013 Sebes et al.
7024548 Bl 4/2006 O’Toole, Jr. 8,561,082 B2  10/2013 Sharma et al.
7,039,949 B2 5/2006 Cartmell ot al. 8,572,007 B1* 10/2013 Manadhataetal. ........... 706/12
7,065,767 B2 6/2006 Kambhammetu et al. 8,615,502 B2 122013 Sarafet al.
7,069,330 Bl 6/2006 McArdle et al. 8,621,233 B1* 12/2013 Manadhataetal. .......... 713/188
7,082,456 B2 7/2006 Mani-Meitav et al. 8,701,182 B2 4/2014 Bhargava et al.
7,093,239 Bl 8/2006 van der Made 8,70L,189 B2 42014 Sarafet al.
7,124,409 B2 10/2006 Davis et al. 8,707,422 B2 4/2014 Bhargava et al.
7,139,916 B2  11/2006 Billingsley et al. 2002/0056076 Al 52002 van der Made
7.152.148 B2  12/2006 Williams et al. 2002/0069367 Al 6/2002 Tindal et al.
7159.036 B> 12007 Hinchliffe et al. 2002/0083175 Al 6/2002 Afek et al.
7177267 B2 2/2007 Oliver et al. 2002/0099671 Al 7/2002 Mastin et al.
7203.864 B2 4/2007 Goin et al. 2003/0014667 Al 1/2003 Kolichtchak
7251655 B2 7/2007 Kaler et al. 2003/0023736 Al 1/2003 Abkemeier
7,290,266 B2 10/2007 Gladstone et al. 2003/0033510 Al 2/2003 Dice
7,302,558 B2 11/2007 Campbell et al. 2003/0073894 Al 4/2003 Chiang et al.
7,330,849 B2 2/2008 Gerasoulis et al. 2003/0074552 Al 4/2003 Olkin et al.
7,346,781 B2 3/2008 Cowle et al. 2003/0115222 Al 6/2003 Oashi et al.
7,349,931 B2 3/2008 Homne 2003/0120601 Al 6/2003 Ouye et al.
7,350,204 B2 3/2008 Lambert et al. 2003/0120811 Al 6/2003 Hanson et al.
7,353,501 B2 4/2008 Tang et al. 2003/0120935 Al 6/2003 Teal et al.
7,363,022 B2 4/2008 Whelan et al. 2003/0145232 Al 7/2003 Poletto et al.
7,370,360 B2 5/2008 van der Made 2003/0163718 Al 82003 Johnson et al.
7,406,517 B2 7/2008 Hunt et al. 2003/0167292 Al 9/2003 Ross
7,441,265 B2 10/2008 Staamann et al. 2003/0167399 Al 9/2003 Audebert et al.
7,464,408 Bl  12/2008 Shah et al. 2003/0200332 Al 10/2003 Gupta et al.



US 9,075,993 B2
Page 3

(56)

2003/0212902
2003/0220944
2003/0221190
2004/0003258
2004/0015554
2004/0051736
2004/0054928
2004/0143749
2004/0167906
2004/0230963
2004/0243678
2004/0255161
2005/0018651
2005/0086047
2005/0108516
2005/0108562
2005/0114672
2005/0132346
2005/0228990
2005/0235360
2005/0257207
2005/0257265
2005/0260996
2005/0262558
2005/0273858
2005/0283823
2005/0289538
2006/0004875
2006/0015501
2006/0037016
2006/0080656
2006/0085785
2006/0101277
2006/0133223
2006/0136910
2006/0136911
2006/0195906
2006/0200863
2006/0230314
2006/0236398
2006/0259734
2007/0011746
2007/0028303
2007/0039049
2007/0050579
2007/0050764
2007/0074199
2007/0083522
2007/0101435
2007/0136579
2007/0143851
2007/0169079
2007/0192329
2007/0220061
2007/0220507
2007/0253430
2007/0256138
2007/0271561
2007/0300215
2008/0005737
2008/0005798
2008/0010304
2008/0022384
2008/0034416
2008/0052468
2008/0082977
2008/0120499
2008/0141371
2008/0163207
2008/0163210
2008/0165952
2008/0184373
2008/0235534
2008/0294703
2008/0301770

References Cited

U.S. PATENT DOCUMENTS

Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

11/2003
11/2003
11/2003
1/2004
1/2004
3/2004
3/2004
7/2004
8/2004
11/2004
12/2004
12/2004
1/2005
4/2005
5/2005
5/2005
5/2005
6/2005
10/2005
10/2005
11/2005
11/2005
11/2005
11/2005
12/2005
12/2005
12/2005
1/2006
1/2006
2/2006
4/2006
4/2006
5/2006
6/2006
6/2006
6/2006
8/2006
9/2006
10/2006
10/2006
11/2006
1/2007
2/2007
2/2007
3/2007
3/2007
3/2007
4/2007
5/2007
6/2007
6/2007
7/2007
8/2007
9/2007
9/2007
11/2007
11/2007
11/2007
12/2007
1/2008
1/2008
1/2008
1/2008
2/2008
2/2008
4/2008
5/2008
6/2008
7/2008
7/2008
7/2008
7/2008
9/2008
11/2008
12/2008

van der Made
Schottland et al.
Deshpande et al.
Billingsley et al.
Wilson

Daniell

Hall

Tajali et al.
Smith et al.
Rothman et al.
Smith et al.
Cavanaugh

Yan et al.
Uchimoto et al.
Balzer et al.
Khazan et al.
Duncan et al.
Tsantilis

Kato et al.
Pearson
Blumfield et al.
Cook et al.
Groenendaal
Usov

Zadok et al.
Okajo et al.

Black-Ziegelbein et al.

Baron et al.
Sanamrad et al.
Saha et al.
Cain et al.
Garrett
Meenan et al.
Nakamura et al.
Brickell et al.
Robinson et al.
Jin et al.

Ray et al.
Sanjar et al.
Trakic et al.
Sheu et al.
Malpani et al.
Brennan
Kupferman et al.
Hall et al.
Traut
Schoenberg
Nord et al.
Konanka et al.
Levy et al.
Nicodemus et al.
Keller et al.
Croft et al.
Tirosh et al.
Back et al.
Minami et al.
Gadea et al.
Winner et al.
Bardsley

Saha et al.
Ross

Vempala et al.
Yee et al.
Kumar et al.
Speirs et al.
Araujo et al.
Zimmer et al.
Bradicich et al.
Reumann et al.
Bowman et al.
Smith et al.
Traut et al.
Schunter et al.
Craft et al.
Kinder

2009/0007100 Al
2009/0038017 Al
2009/0043993 Al
2009/0055693 Al
2009/0113110 Al
2009/0144300 Al
2009/0150639 Al
2009/0249053 Al
2009/0249438 Al
2009/0320140 Al
2010/0071035 Al
2010/0077479 Al*
2010/0100970 Al
2010/0114825 Al
2010/0250895 Al
2010/0281133 Al
2010/0293225 Al
2010/0332910 Al
2011/0029772 Al
2011/0035423 Al
2011/0047543 Al
2011/0078550 Al
2011/0093842 Al
2011/0099634 Al*
2011/0113467 Al
2011/0138461 Al
2012/0030731 Al
2012/0030750 Al
2012/0278853 Al

1/2009 Field et al.
2/2009 Durham et al.
2/2009 Ford et al.
2/2009 Budko et al.
4/2009 Chen et al.
6/2009 Chatley et al.
6/2009 Ohata
10/2009 Zimmer et al.
10/2009 Litvin et al.
12/2009 Sebes et al.
3/2010 Budko et al.
3/2010 Viljoen .......covieiinin 726/23
4/2010 Chowdhury et al.
5/2010 Siddegowda
9/2010 Adams et al.
11/2010 Brendel
11/2010 Sebes et al.
12/2010 Ali etal.
2/2011 Fanton et al.
2/2011 Kobayashi et al.
2/2011 Mohinder
3/2011 Nabutovsky
4/2011 Sebes
4/2011 Conradetal. ............. 726/24
5/2011 Agarwal et al.
6/2011 Bhargava et al.
2/2012 Bhargava et al.
2/2012 Bhargava et al.
112012 Chowdhury et al.
2012/0290828 Al  11/2012 Bhargava et al.
2013/0024934 Al 1/2013  Sebes et al.
2013/0031111 Al* 1/2013 Jyotietal. .............. 707/754
2013/0091318 Al 4/2013 Bhattacharjee et al.
2013/0097355 Al 4/2013 Dang et al.
2013/0097356 Al 4/2013 Dang et al.
2013/0117823 Al 5/2013 Dang et al.
2013/0247016 Al 9/2013 Sharma et al.
2013/0247027 Al 9/2013 Shah et al.
2013/0247032 Al 9/2013 Bhargava et al.
2013/0247192 Al 9/2013 Krasser
2013/0276111 Al* 10/2013 Taha ..o 726/23
2013/0326620 Al* 12/2013 Merzaetal. ......cccoc..ee. 726/22
2014/0006405 Al 1/2014 Bhargava et al.

FOREIGN PATENT DOCUMENTS

WO WO 98/44404 10/1998
WO WO 01/84285 A2 11/2001
WO WO 2006/012197 A2 2/2006
WO WO 2006/124832 A1 11/2006
WO WO 2008/054997 A2 5/2008
WO WO 2011/059877 5/2011
WO WO 2012/015485 2/2012
WO WO 2012/015489 2/2012
OTHER PUBLICATIONS

A Tutorial on Clustering Algorithms, retrieved Sep. 10, 2010 from
http://home.dei.polimi.it/matteucc/lustering/tutorial.html, 6 pages.
Cilibrasi, Rudi Langston, “Statistical Inference Through Data Com-
pression,” Institute for Logic, Language and Computation, ISBN:
90-6196-540-3, Copyright 2007, retrieved Sep. 10, 2010 from http://
www.illc.uva.nl/Publications/Dissertations/DS-2007-0 1 text.pdf,
225 pages.

Desktop Management and Control, Website: http://www.vmware.
com/solutions/desktop/, printed Oct. 12, 2009, 1 page.

Dommers, Calculating the normalized compression distance
between two strings, Jan. 20, 2009, retrieved Sep. 10, 2010 from
http://www.c-sharpcorner.com/UploadFile/acinonyx72/
NCD01202009071004AM/NCD.aspx, 5 pages.

Eli M. Dow, etal., “The Xen Hypervisor,” INFORMIT, dated Apr. 10,
2008, http://www.informit.com/articles/printerfriendly.
aspx?p=1187966, printed Aug. 11, 2009 (13 pages).

Karypis, et al., “CHAMELEON: A Hierarchical Clustering Algo-
rithm Using Dynamic Modeling,” copyright 2005-2010, George
Karypis, Internal Lab Website, retrieved Sep. 10, 2010 from http://
glaros.dtc.umn.edu/gkhome/cluto/cluto/publications, 1 page.



US 9,075,993 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

Karypis, George, Contact METIS/CLUTO/MONSTER/YASSPP/
Forums, Internal Lab Website, copyright 2006-2010, retrieved Sep.
10, 2010 from http://glaros.dtc.umn.edu/gkhome, 1 page.

Kurt Gutzmann, “Access Control and Session Management in the
HTTP Environment,” Jan./Feb. 2001, pp. 26-35, IEEE Internet Com-
puting.

Matt Rasmussen and George Karypis, “gCLUTO: An Interactive
Clustering, Visualitzation, and Analysis System,” copyright 2005-
2010, George Karypis, Internal Lab Website, retrieved Sep. 10,2010
from http://glaros.dtc.umn.edu/gkhome/cluto/geluto/publications, 1
page.

Matthew Rasmussen, et al., “wCLUTO: A Web-enabled Clustering
Toolkit,” copyright 2005-2010, George Karypis, Internal Lab
Website, retrieved Sep. 10, 2010 from http://glaros.dtc.umn.edu/
gkhome/cluto/wcluto/publications, 1 page.

Secure Mobile Computing, Website: http://www.vmware.com/solu-
tions/desktop/mobile.html, printed Oct. 12, 2009, 2 pages.
Steinbach, et al., “A Comparison of Document Clustering Tech-
niques,” copyright 2005-2010, George Karypis, Internal Lab
Website, retrieved Sep. 10, 2010 from http://glaros.dtc.umn.edu/
gkhome/cluto/cluto/publications, 1 page.

Tagarelli, et al., “A Segment-based Approach to Clustering Multi-
Topic Documents,” copyright 2005-2010, George Karypis, Internal
Lab Website, retrieved Sep. 10, 2010 from http://glaros.dtc.umn.edu/
gkhome/cluto/cluto/publications, 1 page.

U.S. Appl. No. 10/651,591, entitled “Method and System for Con-
tainment of Networked Application Client Software by Explicit
Human Input,” filed Aug. 29, 2003, Inventor(s): Rosen Sharma et al.
U.S. Appl. No. 11/060,683, entitled “Distribution and Installation of
Solidified Software on a Computer,” filed Feb. 16, 2005, Inventor(s):
Bakul Shah et al.

U.S. Appl. No. 11/277,596, entitled “Execution Environment File
Inventory,” filed Mar. 27, 2006, Inventor(s): Rishi Bhargava et al.
U.S. Appl. No. 11/346,741, entitled “Enforcing Alignment of
Approved Changes and Deployed Changes in the Software Change
Life-Cycle,” filed Feb. 2, 2006, Inventor(s): Rahul Roy-Chowdhury
et al.

U.S. Appl. No. 11/379,953, entitled “Software Modification by
Group to Minimize Breakage,” filed Apr. 24, 2006, Inventor(s): E.
John Sebes et al.

U.S. Appl. No. 11/437,317, entitled “Connectivity-Based Authoriza-
tion,” filed May 18, 2006, Inventor(s): E. John Sebes et al.

U.S. Appl. No. 12/008,274, entitled Method and Apparatus for Pro-
cess Enforced Configuration Management, filed Jan. 9, 2008, Inven-
tor(s): Rishi Bhargava et al.

U.S. Appl. No. 12/290,380, entitled “Application Change Control,”
filed Oct. 29, 2008, Inventor(s): Rosen Sharma et al.

U.S. Appl. No. 12/291,232, entitled “Method of and System for
Computer System State Checks,” filed Nov. 7, 2008, inventor(s):
Rishi Bhargava et al.

U.S. Appl. No. 12/322,220, entitled “Method of and System for
Malicious Software Detection Using Critical Address Space Protec-
tion,” filed Jan. 29, 2009, Inventor(s): Suman Saraf et al.

U.S. Appl. No. 12/322,321, entitled “Method of and System for
Computer System Denial-of-Service Protection,” filed Jan. 29, 2009,
Inventor(s): Suman Saraf et al.

U.S. Appl. No. 12/426,859, entitled “Method of and System for
Reverse Mapping Vnode Pointers,” filed Apr. 20, 2009, Inventor(s):
Suman Saraf et al.

U.S. Appl. No. 12/545,609, entitled “System and Method for Enforc-
ing Security Policies in a Virtual Environment,” filed Aug. 21, 2009,
Inventor(s): Amit Dang et al.

U.S. Appl. No. 12/545,745, entitled “System and Method for Provid-
ing Address Protection in a Virtual Environment,” filed Aug. 21,
2009, Inventor(s): Preet Mohinder.

U.S. Appl. No. 12/615,521, entitled “System and Method for Pre-
venting Data Loss Using Virtual Machine Wrapped Applications,”
filed Nov. 10, 2009, Inventor(s): Sonali Agarwal, et al.

U.S. Appl. No. 12/636,414, entitled “System and Method for Man-
aging Virtual Machine Configurations,” filed Dec. 11, 2009, Inven-
tor(s): Harvinder Singh Sawhney, et al.

U.S. Appl. No. 12/844,892, entitled “System and Method for Pro-
tecting Computer Networks Against Malicious Software,” filed Jul.
28, 2010, Inventor(s) Rishi Bhargava, et al.

U.S. Appl. No. 12/844,964, entitled “System and Method for Net-
work Level Protection Against Malicious Software,” filed Jul. 28,
2010, Inventor(s) Rishi Bhargava, et al.

U.S. Appl. No. 12/880,125, entitled “System and Method for Clus-
tering Host Inventories,” filed Sep. 12, 2010, Inventor(s) Rishi
Bhargava, et al.

U.S. Appl. No. 12/903,993, entitled “Method and System for Con-
tainment of Usage of Language Interfaces,” filed Oct. 13, 2010,
Inventor(s) Rosen Sharma, et al.

U.S. Appl. No. 12/944,567, entitled “Classification of Software on
Networked Systems,” filed Nov. 11, 2010, Inventor(s) E. John Sebes,
et al.

U.S. Appl. No. 12/946,081, entitled “Method and System for Con-
tainment of Usage of Language Interfaces,” filed Nov. 15, Inventor(s)
Rosen Sharma, et al.

U.S. Appl. No. 12/946,344, entitled “Method and System for Con-
tainment of Usage of Language Interfaces,” filed Nov. 15, 2010,
Inventor(s) Rosen Sharma, et al.

U.S. Appl. No. 12/975,745, entitled “Program-Based Authorization,”
filed Dec. 22, 2010, Inventor(s) Rishi Bhargava, et al.

Ying Zhao and George Karypis, “Clustering in Life Sciences,” copy-
right 2005-2010, George Karypis, Internal Lab Website, retrieved
Sep. 10, 2010 from http://glaros.dtc.umn.edu/gkhome/cluto/cluto/
publications, 1 page.

Ying Zhao and George Karypis, “Criterion Functions for Document
Clustering: Experiments and Analysis,” copyright 2005-2010,
George Karypis, Internal Lab Website, retrieved Sep. 10, 2010 from
http://glaros.dtc.umn.edw/gkhome/cluto/cluto/publications, 1 page.
Ying Zhao and George Karypis, “Empirical and Theoretical Com-
parisons of Selected Criterion Functions for Document Clustering,”
copyright 2005-2010, George Karypis, Internal Lab Website,
retrieved Sep. 10, 2010 from http://glaros.dtc.umn.edu/gkhome/
cluto/cluto/publications, 1 page.

Ying Zhao and George Karypis, “Evaluation of Hierarchical Clus-
tering Algorithms for Document Datasets,” copyright 2005-2010,
George Karypis, Internal Lab Website, retrieved Sep. 10, 2010 from
http://glaros.dtc.umn.edw/gkhome/cluto/cluto/publications, 1 page.
Ying Zhao and George Karypis, “Hierarchical Clustering Algorithms
for Document Datasets,” copyright 2005-2010, George Karypis,
Internal Lab Website, retrieved Sep. 10, 2010 from http://glaros.dtc.
umn.edw/gkhome/cluto/cluto/publications, 1 page.

Ying Zhao and George Karypis, “Topic-Driven Clustering for Docu-
ment Datasets,” copyright 2005-2010, George Karypis, Internal Lab
Website, retrieved Sep. 10, 2010 from http://glaros.dtc.umn.edu/
gkhome/cluto/cluto/publications, 1 page.

Barrantes et al., “Randomized Instruction Set Emulation to Dispurt
Binary Code Injection Attacks,” Oct. 27-31, 2003, ACM, pp. 281-
289.

Check Point Software Technologies Ltd.: “ZoneAlarm Security Soft-
ware User Guide Version 97, Aug. 24, 2009, XP002634548, 259
pages, retrieved from Internet: URL:http://download.zonealarm.
com/bin/media/pdf/zaclient91 user manual.pdf.

Gaurav et al., “Countering Code-Injection Attacks with Instruction-
Set Randomization,” Oct. 27-31, 2003, ACM, pp. 272-280.

TA-32 Intel® Architecture Software Developer’s Manual, vol. 3B;
Jun. 2006; pp. 13, 15, 22 and 145-146.

Notification of Transmittal of the International Search Report and the
Written Opinion of the International Searching Authority (1 page),
International Search Report (4 pages), and Written Opinion (3
pages), mailed Mar. 2, 2011, International Application No. PCT/
US2010/055520.

Notification of Transmittal of the International Search Report and the
Written Opinion of the International Searching Authority, or the
Declaration (1 page), International Search Report (6 pages), and
Written Opinion of the International Searching Authority (10 pages)
for International Application No. PCT/US2011/020677 mailed Jul.
22,2011.



US 9,075,993 B2
Page 5

(56) References Cited
OTHER PUBLICATIONS

Notification of Transmittal of the International Search Report and
Written Opinion of the International Searching Authority, or the
Declaration (1 page), International Search Report (3 pages), and
Written Opinion of the International Search Authority (6 pages) for
International Application No. PCT/US2011/024869 mailed Jul. 14,
2011.

Tal Garfinkel, et al., “Terra: A Virtual Machine-Based Platform for
Trusted Computing,” XP-002340992, SOSP’03, Oct. 19-22, 2003,
14 pages.

U.S. Appl. No. 13/037,988, entitled “System and Method for Botnet
Detection by Comprehensive Email Behavioral Analysis,” filed Mar.
1, 2011, Inventor(s) Sven Krasser, et al.

Notification of International Preliminary Report on Patentability and
Written Opinion mailed May 24, 2012 for International Application
No. PCT/US2010/055520, 5 pages.

Sailer et al., sHype: Secure Hypervisor Approach to Trusted Virtual-
ized Systems, IBM research Report, Feb. 2, 2005, 13 pages.

U.S. Appl. No. 13/558,181, entitled “Method and Apparatus for
Process Enforced Configuration Management,” filed Jul. 25, 2012,
Inventor(s) Rishi Bhargava et al.

U.S. Appl. No. 13/558,227, entitled “Method and Apparatus for
Process Enforced Configuration Management,” filed Jul. 25, 2012,
Inventor(s) Rishi Bhargava et al.

U.S. Appl. No. 13/558,277, entitled “Method and Apparatus for
Process Enforced Configuration Management,” filed Jul. 25, 2012,
Inventor(s) Rishi Bhargava et al.

Taskar et al., Probabilistic Classification and Clustering in Relational
Data, 2001, Google, 7 pages.

USPTO May 24, 2013 Notice of Allowance from U.S. Appl. No.
12/880,125.

Myung-Sup Kim et al., “A load cluster management system using
SNMP and web”, [Online], May 2002, pp. 367-378, [Retrieved from
Internet on Oct. 24, 2012], <http://onlinelibrary.wiley.com/doi/10.
1002/nem 453/pdf>.

G. Pruett et al.,, “BladeCenter systems management software”,
[Online], Nov. 2005, pp. 963-975, [Retrieved from Internet on Oct.
24, 2012], <http://citeseerx.Ist.psu.edu/viewdoc/download?doi=10.
1.1.91.5091 &rep=rep 1 &type=pdf>.

Philip M. Papadopoulos et al., “NPACI Rocks: tools and techniques
for easily deploying manageable Linux clusters” [Online], Aug.
2002, pp. 707-725, [Retrieved from internet on Oct. 24, 2012],
<http://onlinelibrary.wiley.com/doi/10.1002/cpe.722/pdf>.

Thomas Staub et al., “Secure Remote Management and Software
Distribution for Wireless Mesh Networks”, [Online], Sep. 2007, pp.
1-8, [Retrieved from Internet on Oct. 24, 2012], <http://cds.unibe.ch/
research/pub__files/BO7 pdf>.

International Preliminary Report on Patentability received for the
PCT Application No. PCT/US2011/020677, mailed on Feb. 7, 2013,
9 pages.

International Preliminary Report on Patentability received for the
PCT Application No. PCT/US2011/024869, mailed on Feb. 7, 2013,
6 pages.

Office Action received for the U.S. Appl. No. 12/880,125, mailed on
Jul. 5, 2012, 12 pages.

Ex Parte Quayle Action received for the U.S. Appl. No. 12/880,125,
mailed on Dec. 21, 2012, 4 pages.

USPTO May 9, 2014 Notice of Allowance received for U.S. Appl.
No. 14/016,497, 18 pages.

Larsen, Bjornar et al., “Fast and effective text mining using linear-
time document clustering,” 1999, ACM, pp. 16-22.

* cited by examiner



U.S. Patent Jul. 7, 2015 Sheet 1 of 10 US 9,075,993 B2

110a 100
5 N FIG. 1
HOST 1
PROGRAM 120
FILES 1 N 130
1 1éa SERVER
SECURITY
110b ADMINISTRATION MODULE
150
HOST 2 140 P,
PROGRAM PROGRAM FILE
FILES 2 GROUPING MODULE
/
112b REMEDIATION MODULES
N
o i 1%? 160 194
MEMORY
PROCESSOR ELEMENT
HOSTn
PROGRAM
FILES n L 172
; )
112¢ PROGRAM
/ FILE USER || INPUT
110c INVENTORY INTERFACE MECHANISM
CONSOLE \

180 170



U.S. Patent Jul. 7, 2015 Sheet 2 of 10 US 9,075,993 B2

FIG. 2A

202~

PERFORM FREQUENCY
ANALYSIS ON PROGRAM FILES

!

204~

DISPLAY PROGRAM FILE
COUNTS BUCKETED BY FREQUENCY

!

206~

USER SELECTS FREQUENCY BUCKET

!

208~

INITIALIZE i to 1 AND DISPLAY
PROGRAM FILE COUNTS FOR
SELECTED FREQUENCY, BUCKETED
BY ATTRIBUTE A, VALUES

200

BUCKET ACTION

USER SELECTION?

IS ATTRIBUTE

A; THE LAST ATTRIBUTE IN THE
SEQUENCE?

214

ATTRIBUTE A; BUCKET

216

DISPLAY PROGRAM FILE COUNTS FOR
SELECTED FREQUENCY AND
ATTRIBUTES A, THROUGHA;,

BUCKETED BY ATTRIBUTE A(i+1) VALUES

y

PERFORM ACTION ON
FREQUENCY BUCKET

\
YES 212

TOFIG. 2B

BUCKET ACTION

USER SELECTION?

(i+1)

ATTRIBUTEA . . BUCKET 220

v /

222

i=i+1

PERFORM ACTION ON SELECTED
ATTRIBUTE A; BUCKET




U.S. Patent

Jul. 7, 2015

FROMFIG. 2A

v

224~

DISPLAY PROGRAM FILE IDENTIFIERS FOR
PROGRAM FILES OF SELECTED FREQUENCY
AND ATTRIBUTES A, THROUGH A,

Sheet 3 of 10

BUCKET ACTION

USER SELECTION?

PROGRAM FILE IDENTIFIER

228
v /

230~

DISPLAY PROGRAM FILE PATH(S) FOR
SELECTED PROGRAM FILE IDENTIFIER

PERFORM ACTION ON SELECTED
ATTRIBUTE A; BUCKET

IDENTIFIER ACTION

USER SELECTION?

PROGRAM FILE PATH

\

236

DISPLAY HOST DETAILS FOR
SELECTED PROGRAM FILE PATH

PERFORM ACTION ON SELECTED
PROGRAM FILE IDENTIFIER

NONE

)
234

USER SELECTION?

238 HOST AND PATH ACTION

240

PERFORM ACTION ON
SELECTED PROGRAM FILE
PATH FOR SELECTED HOSTS

v

C EnD )
FIG. 2B

US 9,075,993 B2




U.S. Patent Jul. 7, 2015 Sheet 4 of 10 US 9,075,993 B2

308‘
130K
104K +——
£ 780 - ——
3
S 504 —-
260 | — —

0 o
A oqgpm 1O0h-80%  BUN-G0%  0%-AO0%  A0%-20%  20%-0%
304 PREVALENCE

CLICK ON ANY OF THE BARS TO FURTHER DRILL DOWN ON THE
UNKNOWN PROGRAM FILES WITH A SPECIFIC PREVALENCE RANGE

FIG. 3



U.S. Patent Jul. 7, 2015 Sheet 5 of 10 US 9,075,993 B2

400

\‘

UNKNOWN PROGRAM FILES ON 80% - 60% OF HOSTS BY VENDOR

VENDOR A, 18 VENDOR B, 50
404
406

402" 408

VENDORC, 84

OPTION 1:  CLICK ON ANY OF THE SLICES TO FURTHER DRILL DOWN ON
THE UNKNOWN PROGRAM FILES FROM A SPECIFIC VENDOR.

OPTION 2:  CLICK BELOW TO PERFORM ANY OF THE FOLLOWING ACTIONS ON ALL
OF THE UNKNOWN PROGRAM FILES FOR THIS FREQUENCY RANGE:

e AUTHORIZE VIA LOCAL WHITELIST

* QUARANTINE VIA ANTI-VIRUS

o BLACKLIST VIA HOST IPS

o BLACKLIST VIA APPLICATION CONTROL

FIG. 4



U.S. Patent Jul. 7, 2015 Sheet 6 of 10 US 9,075,993 B2

500

UNKNOWN PROGRAM FILES ON 80% - 60% OF HOSTS FROM VENDOR C BY PRODUCT
PRODUCT A, 43

504
502~

506 508

PRODUCT B, 18 PRODUCT C, 23

"~ 509

/

OPTION 1: CLICK ON ANY OF THE PRODUCT SLICES TO FURTHER DRILL
DOWN ON THE UNKNOWN PROGRAM FILES FOR THIS VENDOR

OPTION 2: CLICK BELOW TO PERFORM ANY OF THE FOLLOWING ACTIONS
ON ALL OF THE UNKNOWN PROGRAM FILES FOR THIS VENDOR:

e AUTHORIZE VIA LOCAL WHITELIST

o QUARANTINE VIA ANTI-VIRUS

o BLACKLIST VIA HOST IPS

o BLACKLIST VIA APPLICATION CONTROL

FIG. 5



U.S. Patent Jul. 7, 2015 Sheet 7 of 10 US 9,075,993 B2

600

UNKNOWN PROGRAM FILES ON 80% - 60% OF HOSTS
FROM VENDOR C, PRODUCT A BY VERSION

9.0.30729.1, 13 8.0.50727.762, 6
606 604

608
609 10.0.30319.1, 24

602

OPTION 1: CLICK ON ANY OF THE VERSION SLICES TO FURTHER DRILL
DOWN ON THE UNKNOWN PROGRAM FILES FOR A SPECIFIC
PRODUCT VERSION

OPTION 2: CLICK BELOW TO PERFORM ANY OF THE FOLLOWING ACTIONS
ON ALL OF THE UNKNOWN PROGRAM FILES FOR THIS PRODUCT:

e AUTHORIZE VIA LOCAL WHITELIST

o QUARANTINE VIA ANTI-VIRUS

e BLACKLIST VIA HOST IPS

o BLACKLIST VIA APPLICATION CONTROL

FIG. 6



U.S. Patent Jul. 7, 2015 Sheet 8 of 10 US 9,075,993 B2

700

N

UNKNOWN PROGRAM FILES ON 80% - 60% OF HOSTS FROM
VENDOR C, PRODUCT A, VERSION 8.0.50727.762 BY HASH

HASH UNIQUE PATH COUNT
ath6dd7005c281bal3e548bbee76156716592c0b 1
0de75552042c6a70338c64¢669526821167¢1995 1
6039aaff9276c3ce71f99137cAdic553038256bc 1

706~ 1336436085700chfc9251925e8e0affef34adef 3
c987905¢ch9dad00928f44815447e41287h5aadee 1
7641476624000d620042306b40759701724b906a 1

70{ 793‘ >o4

OPTION 1: CLICK ON ANY OF THE HASHES TO FURTHER DRILL DOWN ON
THE UNKNOWN PROGRAM FILES AND OBTAIN FILE PATH
INFORMATION

OPTION 2: CLICK BELOW TO PERFORM ANY OF THE FOLLOWING ACTIONS
ON ALL OF THE UNKNOWN PROGRAM FILES FOR THIS PRODUCT
VERSION:

o AUTHORIZE VIA LOCAL WHITELIST

e QUARANTINE VIA ANTI-VIRUS

o BLACKLIST VIAHOST IPS

o BLACKLIST VIA APPLICATION CONTROL

FIG. 7



U.S. Patent Jul. 7, 2015 Sheet 9 of 10 US 9,075,993 B2

800

\

PATH DETAILS FOR HASH f3a643e085f00cbfc9251925e8e0affef34aleef
FROM VENDOR C, PRODUCT A, VERSION 8.0.50727.762

PATH FREQUENCY
806~[ C:\Program Files\Product A\VC\bin\link.exe 6
C:\Compilers\VS8\VClbin\link.exe 1
C:\Tools\VS8\WVC\binllink.exe 1
80{ 80‘3‘ ‘304

OPTION 1: CLICK ON ANY OF THE LISTED FILE PATHS FOR HOST SPECIFIC
INFORMATION AND REMEDIATION OPTIONS

OPTION 2: CLICK BELOW TO PERFORM ANY OF THE FOLLOWING ACTIONS
ON THIS FILE HASH:

o AUTHORIZE VIA LOCAL WHITELIST

o QUARANTINE VIA ANTI-VIRUS

o BLACKLIST VIA HOST IPS

o BLACKLIST VIA APPLICATION CONTROL

Q]

FIG. 8



U.S. Patent Jul. 7, 2015 Sheet 10 of 10 US 9,075,993 B2

900

LB
PATH C:\Program Files\Product\VC\bin\link.exe - HASH f3a643e085f00cbfc9251925e8e0affef34aeef [ﬁ

HOST SELECTED
daver-abs-01.lab1.division1.local &
daver-abs-02.lab1.division1.local &
kish-test-01.1ab1.division1.local @
kish-test-02.lab1.division1.local %]
rishi-test-01.lab1.division1.local 7]
rishi-test-02.lab1.division1.local &

90/2‘ CLICK BELOW TO PERFORM ANY OF THE FOLLOWING ‘9\04
ACTIONS ON THE ABOVE PATH FOR THE SELECTED HOSTS:
e AUTHORIZE VIA LOCAL WHITELIST
Wad o QUARANTINE VIA ANTI-VIRUS
909 o BLACKLIST VIA HOST IPS
o BLACKLIST VIA APPLICATION CONTROL

FIG. 9



US 9,075,993 B2

1
SYSTEM AND METHOD FOR SELECTIVELY
GROUPING AND MANAGING PROGRAM
FILES

RELATED U.S. APPLICATION INFORMATION

This application is related to co-pending U.S. patent appli-
cation Ser. No. 12/880,125, filed Sep. 12, 2010, entitled
“SYSTEM AND METHOD FOR CLUSTERING HOST
INVENTORIES,” by Inventors Rishi Bhargava et al. The
disclosure of that application is considered part of and is
incorporated by reference herein in its entirety.

TECHNICAL FIELD OF THE INVENTION

This invention relates in general to the field of data man-
agement and, more particularly, to a system and a method for
selectively grouping and managing program files.

BACKGROUND OF THE INVENTION

The field of computer network administration and support
has become increasingly important and complicated in
today’s society. Computer network environments are config-
ured for virtually every enterprise or organization, typically
with multiple interconnected computers (e.g., end user com-
puters, laptops, servers, printing devices, etc.). In many such
enterprises, Information Technology (IT) administrators may
be tasked with maintenance and control of the network envi-
ronment, including executable software files on hosts, serv-
ers, and other network computers. Executable software files
or program files may be generally classified as whitelist soft-
ware (i.e., known safe software), blacklist software (i.e.,
known unsafe software), and greylist software (i.e., unknown
software). As the number of executable software files in a
network environment increases, the ability to control, main-
tain, and remediate these files efficiently can become more
difficult. Generally, greater diversity of software imple-
mented in various computers of a network translates into
greater difficulty in managing such software. For example, in
large enterprises, executable software inventories may vary
greatly among end user computers across departmental
groups, requiring time and effort by IT administrators to
identify and manage executable software in such a diverse
environment. Thus, innovative tools are needed to assist IT
administrators in the effective control and management of
executable software files on computers within computer net-
work environments.

BRIEF DESCRIPTION OF THE DRAWINGS

To provide a more complete understanding of the present
invention and features and advantages thereof, reference is
made to the following description, taken in conjunction with
the accompanying figures, wherein like reference numerals
represent like parts, in which:

FIG. 1 is a simplified block diagram of an exemplary
implementation in a network environment of a system for
selectively grouping and managing program files;

FIGS. 2A and 2B are simplified flowcharts illustrating a
series of example steps associated with an embodiment of the
system of the present disclosure; and

FIGS. 3-9 are exemplary screenshots associated with an
example scenario in one example implementation of the sys-
tem in accordance with the present disclosure.

10

15

20

25

30

35

40

45

50

55

60

2
DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

Overview

A method in one example embodiment includes determin-
ing a frequency range corresponding to a subset of a plurality
of program files on a plurality of hosts in a network environ-
ment. The method also includes generating a first set of counts
including a first count that represents an aggregate amount of
program files in a first grouping of one or more program files
of'the subset. In this method each of the one or more program
files of the first grouping includes a first value of a primary
attribute. In specific embodiments, each of the plurality of
program files is an unknown program file. In further embodi-
ments, the primary attribute is one of a plurality of file
attributes provided in file metadata. Other specific embodi-
ments include either blocking or allowing execution of each
of the program files of the first grouping. More specific
embodiments include determining a unique identifier corre-
sponding to at least one program file of the first grouping and
determining a file path count representing an aggregate
amount of one or more unique file paths associated with the
unique identifier. Other specific embodiments include deter-
mining a plurality of frequencies corresponding respectively
to the plurality of program files, where each of the plurality of
frequencies is determined by calculating all occurrences of a
respective one of the plurality of program files in the plurality
of hosts.

Example Embodiments

FIG. 1is asimplified block diagram illustrating an example
implementation of a software management system 100 for
selectively grouping and managing program files in a network
environment. The exemplary network environment illustrates
a server 130 suitably connected to hosts 110a, 1105, and 110¢
(referred to collectively herein as hosts 110) with respective
program files 112a, 1125, and 112¢ (referred to collectively
herein as program files 120). Software elements of software
management system 100 may be implemented in a computer,
such as server 130. In one embodiment, server 130 may
include software elements such as a security administration
module 140, a program file grouping module 150, and reme-
diation modules 160. Hardware elements such as a processor
132 and a memory element 134 may also be provided in
server 130. Additional memory in the form of a program file
inventory 180 may be suitably connected to server 130. A
console 170, with a user interface 172 and an input mecha-
nism 174, for interacting with software elements of software
management system 100 may also be suitably connected to
server 130.

The network environment illustrated in FIG. 1 may be
generally configured or arranged to represent any communi-
cation architecture capable of electronically exchanging
packets. In addition, the network may also be configured to
exchange packets with other networks such as, for example,
the Internet, or other LANs. Other common network elements
(e.g., email gateways, web gateways, routers, switches, load-
balancers, firewalls, etc.), may also be provisioned in the
network.

Software management system 100 may be utilized to maxi-
mize the effectiveness of actions taken by a user (e.g., IT
administrators, network operators, etc.) against selected pro-
gram files in a network environment. Embodiments of system
100 can provide valuable information about unknown soft-
ware files and can provide remediation options that can be



US 9,075,993 B2

3

selectively applied to individual unknown software files or to
selected groupings of unknown software files. In one example
embodiment, when software management system 100 is
implemented in a computer network environment as shown in
FIG. 1, a grouping process may be applied to an unknown
software inventory of a selected set of computers (e.g., hosts
110) in the network. The program files identified in the
unknown software inventory may be evaluated and grouped
according to a predefined frequency measure and various file
attributes, in succession. A user may select an action to be
performed on all program files in a grouping, where each of
the program files in the grouping has the same distinct value
for a particular file attribute (e.g., vendor, product, product
version, etc.). The program files of the grouping may also be
associated with the same distinct values of one or more other
file attributes previously selected by the user. The user may
also successively select file attribute groupings until each
unknown program file, having the same distinct values of the
file attributes selected by the user, is identified by a unique
identifier, by a program file path, and/or by a particular host.
The user may select one or more of the unique identifiers,
program file paths, or hosts to perform a desired action to
remediate the corresponding unknown program files. Thus,
system 100 enables the user to more effectively and effi-
ciently manage unknown program files on a set of computers
in a particular network environment.

For purposes of illustrating the techniques of software
management system 100, it is important to understand the
activities and security concerns that may be present in a given
network such as the network shown in FIG. 1. The following
foundational information may be viewed as a basis from
which the present disclosure may be properly explained. Such
information is offered earnestly for purposes of explanation
only and, accordingly, should not be construed in any way to
limit the broad scope of the present disclosure and its poten-
tial applications.

Typical network environments, both in organizations (e.g.,
businesses, schools, government organizations, etc.) and in
homes, include a plurality of computers such as end user
desktops, laptops, servers, network appliances, and the like,
with each computer having an installed set of executable
software. In large organizations, network environments may
include hundreds or thousands of computers, which can span
different buildings, cities, and/or geographical areas around
the world. IT administrators are often tasked with the extraor-
dinary responsibility of maintaining these computers and
their software in a way that minimizes or eliminates disrup-
tion to the organization’s activities.

One difficulty IT administrators face when managing a
network environment is ensuring that only trusted and
approved executable software files are present. Although
computers in a network may initially be configured with only
trusted and approved executable software, continuous efforts
(both electronic and manual) are usually necessary to protect
against unknown and/or malicious software. Various protec-
tion systems can be implemented that seek to prevent
unknown and/or malicious software from infecting the net-
work computers. For example, traditional anti-virus solutions
search databases of malicious software (i.e., blacklists) and
prevent any software identified on a blacklist from being
executed. Blacklists, however, only contain known threats
and, consequently, are ineffective against new malware or
targeted attacks. Moreover, malicious users are constantly
devising new schemes to penetrate secure networks with
malicious software. Once a new piece of malicious software
has been created, traditional blacklists will not include such
new software until it has been identified as a possible threat,

10

15

20

25

30

35

40

45

50

55

60

65

4

evaluated, and determined to be malicious, often giving the
new piece of software time to propagate and spread through-
out multiple networks.

Other protection systems include whitelisting solutions,
which search databases of known trusted software (i.e.,
whitelists) and only allow software to execute if the software
is identified on the whitelist. Although these systems provide
complete protection in preventing unknown and/or malicious
software from being executed, such solutions still suffer from
several drawbacks. In particular, whitelisting solutions can be
inflexible, potentially creating delays and disruptions when
new software is needed and adding additional steps to admin-
istrative workflows. Moreover, unknown and/or malicious
software may nevertheless be present in the memory or disks
of'various computer networks, consuming valuable resources
and risking inadvertent execution or propagation (e.g., if the
whitelisting solution is temporarily or permanently disabled,
if the software is copied to portable memory and introduced
into a less protected network environment, etc.).

While anti-virus solutions utilize blacklist software, and
whitelisting solutions utilize whitelist software in their pro-
tection schemes, a third type of software may exist in a net-
work environment: unknown or “greylist” software.
Unknown or greylist software is software not explicitly
known to be malicious or trusted. Anti-virus solutions may
allow all unknown software to be executed, while whitelisting
solutions may prevent all unknown software from being
executed. Each solution suffers from the lack of an efficient
method of distinguishing between and appropriately remedi-
ating unknown safe software that has been introduced into a
network for legitimate purposes and unknown malicious soft-
ware that has infiltrated a network. Unknown software can be
identified using, for example, existing solutions such as mali-
cious software protection systems of co-pending U.S. patent
application Ser. No. 12/844,892, entitled “SYSTEM AND
METHOD FOR LOCAL PROTECTION AGAINST MALI-
CIOUS SOFTWARE” and U.S. patent application Ser. No.
12/844,964, entitled “SYSTEM AND METHOD FOR NET-
WORK LEVEL PROTECTION AGAINST MALICIOUS
SOFTWARE,” both filed on Jul. 28, 2010, by Rishi Bhargava
etal. (referred to hereinafter as “co-pending U.S. patent appli-
cation Ser. No. 892 and “co-pending U.S. patent application
Ser. No. ’964”, respectively). In another embodiment,
unknown software files could be identified by obtaining an
inventory of every program file existing in every computer of
anetwork (or in a selected set of computers of a network) and
comparing the inventory to one or more third-party global
and/or local whitelists and blacklists. Effectively remediating
the identified unknown software, however, presents more dif-
ficulty.

Because a greylist may contain both malicious and non-
malicious software files, ideally, such files need to be evalu-
ated individually. For example, any non-malicious file having
a legitimate purpose could be approved and added to a
whitelist or otherwise enabled for execution within the net-
work. Files determined to be malicious could be blacklisted,
removed from the network, and/or otherwise disabled from
execution. Suspect files without a known legitimate purpose,
which may or may not be malicious, could be quarantined
pending further evaluation. Managing such files individually,
however, can be both labor-intensive and time-consuming, at
least in part because the computers within the particular net-
work may lack congruency of the unknown software. For
example, unknown software files may be stored in different
memory or disk locations on different computers, different
versions of the unknown software files may be installed in



US 9,075,993 B2

5

different computers, unknown software files may be stored on
some computers but not on others, and the like.

Another problematic issue in managing such files can arise
because different IT administrators may prefer to remediate
unknown software using different techniques and criteria. For
example, one organization may have a relaxed policy allow-
ing any software to be implemented in any computer of their
network if the software is from a particular vendor. Other
organizations may have a more stringent policy such as
requiring the same product version of a particular software
product to be stored in the same file path location of each
computer. Thus, flexible identification and remediation tech-
niques are needed to adequately address the needs of IT
administrators in managing unknown software for different
organizations.

A system for selectively grouping and managing program
files outlined by FIG. 1 can resolve many of these issues. In
accordance with one example implementation of software
management system 100, a method is provided of sifting
through a set of unknown program files and selecting one or
more desired groupings of the unknown program files (e.g., a
grouping associated with a particular value of a single file
attribute, a grouping associated with a plurality of values of a
respective plurality of file attributes, a grouping associated
with a single program file on a single host, etc.). The user may
then remediate the one or more program files of the selected
grouping in any number of ways, including performing vari-
ous actions to effectively block or allow execution (e.g., add-
ing program files to a whitelist, adding program files to a
blacklist, removing, renaming, or quarantining program files,
etc.). Thus, the user is provided an opportunity to maximize
efforts of managing unknown program files within the net-
work by, for example, taking action on the largest groupings
of similar unknown program files and by selecting groupings
identified from the highest frequency ranges across the net-
work.

Note that in this Specification, references to various fea-
tures (e.g., elements, structures, modules, components, steps,
operations, characteristics, etc.) included in “one embodi-
ment”, “example embodiment”, “an embodiment”, “another
embodiment”, ‘“some embodiments”, “various embodi-
ments”, “other embodiments”, “alternative embodiment”,
and the like are intended to mean that any such features are
included in one or more embodiments of the present disclo-
sure, but may or may not necessarily be combined in the same
embodiments.

Turning to the infrastructure of FIG. 1, the example net-
work environment may be configured as one or more net-
works and may be configured in any form including, but not
limited to, local area networks (LANs), wireless local area
networks (WLANSs), metropolitan area networks (MANs),
wide area networks (WANs), virtual private networks
(VPNs), Intranet, Extranet, any other appropriate architecture
or system, or any combination thereof that facilitates com-
munications in a network. In some embodiments, a commu-
nication link 120 may represent any electronic link support-
ing a LAN environment such as, for example, cable, Ethernet,
wireless technologies (e.g., IEEE 802.11x), ATM, fiber
optics, etc. or any suitable combination thereof. In other
embodiments, communication link 120 may represent a
remote connection to central server 130 through any appro-
priate medium (e.g., digital subscriber lines (DSL), telephone
lines, T1 lines, T3 lines, wireless, satellite, fiber optics, cable,
Ethernet, etc. or any combination thereof) and/or through any
additional networks such as a wide area networks (e.g., the
Internet). In addition, gateways, routers, switches, and any
other suitable network elements may be used to facilitate

5

10

15

20

25

30

35

40

45

50

55

60

65

6

electronic communication between hosts 110 and central
server 130. Note that the network illustrated in FIG. 1, may
include a configuration capable of transmission control pro-
tocol/internet protocol (TCP/IP) communications for the
transmission and/or reception of packets in the network. The

network could also operate in conjunction with a user data-
gram protocol/IP (UDP/IP) or any other suitable protocol,
where appropriate and based on particular needs.

In an example embodiment, hosts 110 may represent end
user computers that could be operated by end users. The end
user computers may include desktops, laptops, and mobile or
handheld computers (e.g., personal digital assistants (PDAs)
or mobile phones), or any other type of computing device
operable by an end user. Hosts 110 can also represent other
computers (e.g., servers, appliances, etc.) having program
files, which could be similarly grouped and managed by
system 100, using executable file inventories derived from
sets of program files 112 on such hosts 110. It should be noted
that the network configurations and interconnections shown
and described herein are for illustrative purposes only. FIG. 1
is intended as an example and should not be construed to
imply architectural limitations in the present disclosure.

Sets of program files 112 on hosts 110 can include all
executable files on respective hosts 110. In this Specification,
references to “executable program file”, “executable file”,
“program file”, “executable software file”, “executable soft-
ware”, “software program”, and “software program file” are
meant to encompass any software file comprising instructions
that can be understood and processed by a computer such as
executable files, library modules, object files, other execut-
able modules, script files, interpreter files, and the like. In
addition, although reference is made herein to using unknown
program file inventories, it will be apparent that any other
inventory of program files could be processed by system 100
and successively grouped according to frequency, file
attributes, file identifiers, file paths and/or hosts. In one
embodiment, the system could be configured to allow the IT
administrator to select a particular set of program files to be
evaluated. For example, an [T Administrator may select a
program file inventory derived from the results of clustering
as described in co-pending U.S. patent application Ser. No.
12/880,125, entitled “SYSTEM AND METHOD FOR
CLUSTERING HOST INVENTORIES,” filed Sep. 12, 2010,
by Rishi Bhargava et al., which has been previously fully
incorporated by reference herein (referred to hereinafter as
“co-pending U.S. patent application Ser. No. *125”). In addi-
tion, the IT administrator may also be permitted to select
particular hosts from which the executable file inventory is
derived. For example, all end user computers in a network or
within a particular part of the network (e.g., a particular
business unit of an organization) may be selected. In another
example, a particular type of host such as, for example, all
servers within a network or within a particular part of the
network may be selected.

Central server 130 as illustrated in FIG. 1 represents an
exemplary server linked to hosts 110, which may provide
services to hosts 110. Software management system 100 may
be implemented in central server 130 with program file
grouping module 150, remediation modules 160, and access
to program file inventory 180. Program file inventory 180
may be a selected set of executable files (e.g., a greylist or
unknown executable files) of all hosts 110 or a selected set of
hosts 110. Alternatively, program file inventory 180 could be
an inventory of all executable files in hosts 110 or a selected
set of hosts 110.

Not shown in central server 130 of FIG. 1 is additional
hardware that may be suitably coupled to processor 132 in the



US 9,075,993 B2

7

form of memory management units (MMU), additional sym-
metric multiprocessing (SMP) elements, peripheral compo-
nent interconnect (PCI) bus and corresponding bridges, small
computer system interface (SCSI)/integrated drive electron-
ics (IDE) elements, etc. In addition, suitable modems and/or
network adapters may also be included for allowing network
access. Any suitable operating systems may also be config-
ured in server 130 to appropriately manage the operation of
hardware components therein. Server 130 may include any
other suitable hardware, software, components, modules,
interfaces, or objects that facilitate the operations thereof.
This may be inclusive of appropriate algorithms and commu-
nication protocols that facilitate the selective grouping and
managing operations detailed herein. Similarly, hosts 110
may also be configured with any appropriate processors,
memory, and other hardware, software, components, mod-
ules, interfaces or objects that facilitate the operations
thereof, and that store program files 112.

These elements, shown and/or described with reference to
server 130 and hosts 110 are intended for illustrative purposes
and are not meant to imply architectural limitations. In addi-
tion, each computer, including server 130 and hosts 110, may
include more or less components where appropriate and
based on particular requirements. As used herein in this
Specification, the term ‘computer’ is meant to encompass any
personal computers, laptops, network appliances, routers,
switches, gateways, processors, servers, load balancers, fire-
walls, or any other suitable device, component, element, or
object operable to affect or process electronic information in
a network environment.

Management console 170 may include user interface 172
and input mechanism 174 to allow a user to interact with
central server 130. In one example embodiment, user inter-
face 172 may be a graphical user interface (GUI). In addition,
appropriate input mechanisms could include a keyboard,
mouse, voice recognition, touch pad, input screen, etc. Pro-
gram file grouping module 150 may provide viewable data
related to program file groupings on the graphical user inter-
face for the IT administrator or other authorized user to view,
to select for remediation, or to select for further analysis.
Management console 170 may also be used to select particu-
lar hosts and/or particular types of executable files to be
included in the program file inventory for selectively group-
ing and managing the program files identified therein.

Software management system 100 may be adapted to pro-
vide grouping and managing activities for electronic data
(e.g., program files), which could be resident in memory of a
computer or other electronic storage device. Information
related to the grouping and managing activities can be suit-
ably rendered, or sent to a specific location (e.g., management
console 170, etc.), or simply stored or archived, and/or prop-
erly displayed in any appropriate format.

Security administration module 140 may provide an exist-
ing infrastructure of network security and management and
may be suitably integrated with software management system
100. One exemplary enterprise management system that
could be used includes McAfee® electronic Policy Orches-
trator (ePO) software manufactured by McAfee, Inc. of Santa
Clara, Calif. Other security software that may be integrated
with or otherwise cooperatively provisioned in a network
with software management system 100 includes full or
selected portions of co-pending U.S. patent application Ser.
No. ’892 and co-pending U.S. patent application Ser. No.
’964, previously referenced herein, and co-pending U.S.
patent application Ser. No. *125, previously incorporated
herein by reference. In addition, security technology that
performs one or more remediation activities, as represented

20

25

30

40

45

55

8

by remediation modules 160 in FIG. 1, can include elements
such as McAfee® Anti-Virus software, McAfee® Host Intru-
sion Prevention System (HIPS) software, McAfee® Applica-
tion Control software, or any third party software provision-
ing system configured to perform these remediation
activities. Thus, any such components may be included
within the broad scope of the term ‘software management
system’ as used herein in this Specification. The program file
inventory 180 may include information related to the evalu-
ation of electronic data, such as file identifiers and file
attributes of a selected inventory of program files (e.g.,
unknown program files, program files from clustering activi-
ties, etc.) on hosts 110 and these elements can readily coop-
erate, coordinate, or otherwise interact with software man-
agement system 100.

Turning to FIGS. 2A and 2B, simplified flowcharts illus-
trate operational processing of one embodiment of software
management system 100. Flow begins at step 202 where a
frequency analysis is performed on a program file inventory.
In one embodiment, the program file inventory includes all
unknown program files on hosts 110 within the network.
These unknown executable files can be detected using any
suitable technique such as, for example, the malicious soft-
ware protection systems of co-pending U.S. patent applica-
tion Ser. No. 892 and co-pending U.S. patent application Ser.
No. ’964, both of which have been previously referenced
herein. In addition, the program file inventory could be lim-
ited to program files on specified hosts (e.g., hosts within a
particular business segment of the organization, etc.).

Frequency analysis of the program files identified in the
inventory can be achieved in various ways. In one embodi-
ment, the frequency measure of a particular program file is a
total count of occurrences of the particular program file in
hosts across a network of an organization. Another frequency
measure could be a total number of hosts on which a particu-
lar program file occurs. Other frequency measures include
counting the occurrences of a particular program file in a total
number of business units of the organization, in a total num-
ber of geographical locations of the organization, or in a total
number of machine roles. In addition, host details may be
included when creating frequency measures. For example, a
total number of operating system patch levels or different
operating systems on which a program file is found may be
included in the frequency measure. Generally, any grouping
otf'hosts may be used to define the frequency measure. More-
over, some embodiments of system 100 can be implemented
to allow a user to select the frequency measure to be used or
to allow the user to provide frequency measure configuration
data. In other embodiments, the frequency measure can be
preconfigured in system 100.

After the frequency analysis is performed in step 202, in
step 204 a screen display may be provided on, for example,
user interface 172 of console 170, for a user to view the
frequency ranges ofthe program files and to select a particular
frequency range for further analysis. In one embodiment, the
frequency ranges may be displayed in the form ofa bar graph,
showing the program file counts bucketed by frequency
ranges (e.g., fifths (0-20%, 20-40%, 40-60%, 60-80%,
80-100%), quarters (0-25%, 25-50%, 50-75%, 75-100%),
thirds (0-33%, 33-66%, 66-100%), etc.) and showing the
corresponding program file count for each frequency range of
the particular frequency measure. Accordingly, each fre-
quency range that indicates a count of at least one program file
corresponds to a subset of the program files identified in the
inventory. In step 206, the user may select any of the fre-
quency ranges (or buckets) to further analyze the program
files within the selected frequency range. In one embodiment,



US 9,075,993 B2

9

system 100 is configured such that input mechanism 174
(e.g., mouse, touchpad, voice, etc.) can be used to select the
desired frequency bar displayed on user interface 172 of
console 170.

Once the user selects a particular frequency range, flow
passes to steps 208 through 222 where a sequence of one or
more file attributes, indicated by A,, (n=number of unique file
attributes), may be used successively and cumulatively to
bucket selected groupings of program files. Example file
attributes may include one or more intrinsic file attributes
such as vendor, product, product version, file version, file
description, and/or any other suitable attribute available in the
file metadata. Extrinsic file attributes may also be used,
including, for example, attributes stored in a database indi-
cating the type of software of a particular program file (e.g.,
System Utility, Programmer Tool, Productivity Tool, etc.),
and/or any other suitable extrinsic file attribute.

In step 208, a variable ‘1’ is initialized to 1, and a subset of
program files corresponding to the selected frequency range,
may be bucketed by one or more distinct values of the first or
primary file attribute A . In one embodiment, the bucketing
by file attribute values can be displayed to the user on the user
interface 172 of console 170 in the form of a pie chart. Each
pie slice (or bucket) can represent a respective A grouping of
one or more program files of the subset, where the one or more
program files of a particular A, grouping are each associated
with the same distinct value of file attribute A,. In addition,
each pie slice (or bucket) can indicate a count (or proportion)
of the one or more program files of the respective A, group-
ing. Forexample, if file attribute A | represents vendors, and if
the selected frequency range (e.g., 80-100%) includes pro-
gram files of eight different vendors, then the pie chart could
include eight pie slices, with each pie slice indicating a count
of program files associated with one of the eight vendors.
Thus, aset of eight counts could correspond to file attribute A
and each count within the set of eight counts could represent
an aggregate amount of the one or more program files in a
respective A, grouping.

After the file attribute A; bucketing has been displayed,
flow may pass to decision box 210 to determine whether the
user has selected a particular A, bucket, or whether the user
has selected an action to be performed on the program files
associated with the previously selected frequency range. If
the user has selected an action to be performed, then flow
passes to step 212, such that a chosen action is performed on
each program file represented by the previously selected fre-
quency range.

System 100 may be implemented to provide various
options for performing an action to manage or remediate
groupings of program files. Such options may include, gen-
erally, blocking or allowing execution of program files. Such
blocking or allowing may be accomplished by, for example,
blocking execution of a program file, adding a program file to
a whitelist, adding a program file to a blacklist, moving,
replacing, renaming, or quarantining a program file, changing
a network configuration of hosts containing program files to
block certain network traffic, starting or stopping processes of
hosts containing program files, modifying the software con-
figuration of hosts containing program files, and opening a
change request using a change ticketing system. In addition,
further options may be suitably integrated to assist a user in
evaluating whether particular program files in a grouping
should be trusted. For example, system 100 could allow
actions to be performed on particular program files, such as
running a virus scan, performing heuristic analysis, and the
like. Other actions could be facilitated by system 100 to detect
potential unlicensed software. These other actions could

10

15

20

25

30

35

40

45

50

55

60

65

10

include comparing a selected program file to a packet man-
ager to determine whether the program file corresponds to an
installed software package. To achieve these management
and remediation actions, system 100 may be suitably inte-
grated with various existing security technologies such as, for
example, McAfee® Anti-Virus software, McAfee® HIPS
software, McAfee® Application Control whitelisting soft-
ware, or any other appropriate security software. In other
embodiments, however, the option to perform an action on an
entire frequency range may be omitted, and such options may
just be provided in more defined groupings of program files,
such as groupings by file attributes and/or identifications of
file identifiers, file path names, and/or hosts.

Once the chosen action is performed on the previously
selected frequency range of program files, as indicated in step
212, then the user may begin the analysis again with an
updated or new program file inventory, or may continue to
select other buckets to further analyze and possibly remediate
selected groupings of program files. For example, a user may
decide to quarantine all unknown executable files associated
with a first selected frequency range. Once the quarantine
action has been performed, the user may continue to analyze
the now quarantined program files of the selected first fre-
quency range until additional information about the quaran-
tined program files is determined. Alternatively, after quaran-
tining the first frequency range, the user may select another
frequency range to evaluate and may possibly remediate pro-
gram files associated with the other selected frequency range
after further grouping of such program files by file attributes
and/or by identifying the particular file identifiers, program
file paths, and/or particular hosts associated with the program
files.

With reference again to step 210, if the user selects one of
the file attribute A, buckets by, for example, using user inter-
face 172 of console 170 to click on one of the pie slices in the
pie chart, then flow passes to steps 214 through 222. Steps 214
through 222 may be configured to recur such that a different
file attribute in the sequence of file attributes A, is used to
bucket each successive grouping of program files represented
by the previous bucket selected by the user. A different file
attribute may be used during each recurrence of steps 214
through 222 until the file attribute sequence A, is exhausted or
until no further bucket selection input is received from the
user (e.g., the user does not select a bucket, the user selects an
action to be performed on a bucket).

If'the user selects one of the file attribute A, buckets in step
210, then flow passes to decision box 214 where a determi-
nation is made as to whether A, is the last file attribute in the
sequence A,,. If A, is not the last file attribute in the sequence
A,, then flow passes to step 216 where distinct values of the
next file attribute A, , in the sequence A, are used to bucket
the selected A, grouping of program files represented by the
selected A, bucket. Each A, |y bucket (or pie slice in one
embodiment) can represent a respective A, grouping of
one or more program files of the selected A, grouping, where
each of the one or more program files of a particular A, ,,
grouping are associated with the same distinct value of file
attribute A, ,,. Additionally, all of the program files in all of
the A,,,, groupings are associated with the previously
selected frequency range and the previously selected values
of file attributes A, through A,.

A set of counts may be determined such that each bucket
(or pie slice), corresponding to a distinct value of the file
attribute A ;. |, and representing a respective A ,, |, grouping,
indicates a count (or proportion) of the one or more program
files of the respective A ,, ,, grouping. Thus, each count in the



US 9,075,993 B2

11

set of counts can indicate an aggregate amount of the one or
more program files in its respective A ,, ;, grouping.

After the file attribute A, , bucketing has been displayed,
flow passes to decision box 218 to determine whether the user
has selected a particular A, ,, bucket, or whether the user has
selected an action to be performed to the previously selected
A, bucket. If the user has chosen an action to be performed,
then flow passes to step 220, such that the chosen action is
performed on each program file represented by the previously
selected A, bucket. As previously described herein, system
100 may be implemented to provide various options for per-
forming an action to manage or remediate program files (e.g.,
whitelisting, blacklisting, moving, replacing, renaming,
blocking, quarantining, etc.) and may be suitably integrated
with various existing security technologies to achieve these
managing and remediating activities.

Once the action is performed on the previously selected A,
bucket in step 220, the user may begin the analysis again with
an updated or new program file inventory, or may continue to
select A, buckets or buckets from any of the previously
displayed bucketing screens to further analyze and possibly
remediate other selected groupings of executable program
files. In one example, a user may decide to quarantine all
unknown program files associated with a particular product of
a particular vendor. Once the quarantine action has been
performed in step 220, the user may continue to select dis-
played buckets until additional information about the now
quarantined program files is determined. If any of the quar-
antined files are determined to be stored on a rogue host (e.g.,
associated with a terminated employee) then the user may
decide to go ahead and remove such program files from the
host. In another example, a user may decide to remove all
program files associated with a particular vendor (e.g., a first
distinct value of A,;). Once the files associated with the
selected first vendor are removed, the previous file attribute A,
bucketing may be displayed so that the user may continue to
analyze and possibly remediate the program files associated
with the other vendors (i.e., other distinct values of A|) by
further grouping such program files using additional file
attributes and/or by identifying the particular file identifiers,
program file paths, and/or particular hosts associated with the
program files.

With reference again to step 218, if the user selects a
particular A, , bucket, then flow passes to step 222 where the
value of the variable ‘i’ is changed to i+1. Flow then loops
back to step 214 to determine whether the file attribute A, is
the last attribute in the sequence A,. As long as the user
continues to select a particular A, ,, bucket, steps 214-222
may continue to recur until the sequence A, is exhausted.
Once the sequence A, is exhausted (i.e., A, is the last attribute
in the sequence), as determined in step 214, flow passes to
step 224 of FIG. 2B.

In step 224 of FIG. 2B, a set of unique file identifiers is
determined and displayed for the corresponding one or more
program files represented by the last A, bucket selected by the
user. In one embodiment, the file identifiers can be a crypto-
graphic hash function such as, for example, Secure Hash
Algorithm 1 (SHA-1), which is a well-known algorithm,
widely used in security applications. The unique file identi-
fiers may be displayed on user interface 172 of console 170
along with, optionally, additional information related to each
unique file identifier. Such additional information may
include a unique file path count for each file identifier, where
each unique file path count indicates an aggregate number of
unique file paths associated with the corresponding unique
file identifier. In addition, the ability to select one or more
unique file identifiers for further analysis and the ability to

25

30

40

45

12

perform an action on all of the program files in the grouping
represented by the previously selected A, bucket (and corre-
sponding to the displayed unique file identifiers) may also be
provided.

After displaying the unique file identifiers, flow then passes
to step 226 to determine whether the user has selected a
particular unique file identifier for further analysis, or
whether the user has selected an action to be performed on the
previously selected A, bucket. If the user has selected an
action to be performed, then flow passes to step 228, where
the chosen action (e.g., removing, renaming, replacing, quar-
antining, blocking, whitelisting, blacklisting, etc.), as previ-
ously described herein, is performed on each program file that
is associated with the previously selected A, bucket.

With reference again to step 226, if the user selects one of
the unique program file identifiers, then flow passes to step
230 where additional information related to the selected
unique file identifier may be displayed for the user on user
interface 172 of console 170. In one example embodiment, a
set of one or more unique file paths associated with the
selected unique file identifier can be displayed along with,
optionally, additional information related to each unique file
path. Such additional information may include a frequency
count for each unique file path, where each frequency count
indicates an aggregate number of hosts associated with the
corresponding unique file path. In addition, the ability to
select one or more unique file paths for further analysis and
the ability to perform an action on all of the program files
represented by the previously selected unique file identifier
(and corresponding to the displayed unique file paths) may
also be provided.

After displaying file path details for the selected unique file
identifier in step 230, flow then passes to step 232 to deter-
mine whether the user has selected a particular unique pro-
gram file path for further analysis, or whether the user has
selected an action to be performed on all of the program files
associated with the selected unique program file identifier. If
the user has selected an action to be performed, then flow
passes to step 234, such that the chosen action (e.g., remov-
ing, renaming, replacing, quarantining, blocking, whitelist-
ing, blacklisting, etc.), as previously described herein, is per-
formed on each program file that is associated with the
selected file identifier and that is represented by the last A,
bucket selected by the user.

Referring back to step 232, if the user selects one of the
unique program file paths, then flow passes to step 236 where
additional information related to the selected unique program
file path may be displayed for the user on user interface 172 of
console 170. In one example embodiment, a set of one or
more unique hosts associated with the selected unique file
path can be displayed. In addition, the ability to select one or
more of the identified hosts and to select a desired action to be
performed on the program files associated with the selected
hosts, may also be provided. Flow passes to step 238 where it
is determined whether the user has selected one or more hosts
and a desired action. If the user selects one or more hosts and
a desired action (e.g., removing, renaming, replacing, quar-
antining, blocking, whitelisting, blacklisting, etc.), as previ-
ously described herein, then flow passes to step 240 where the
selected action is performed on each of the program files
associated with the selected file identifier, the selected unique
program file path, and the selected one or more hosts.

In one embodiment, the plurality of program files of the
program file inventory, or any subsequent grouping of the
plurality of program files, may be manipulated using filters to
achieve different results. As an example, filters to remove
certain frequency ranges, counts, file identifiers, file paths,



US 9,075,993 B2

13

and/or hosts, may be utilized where appropriate and based on
particular needs. Filters may also be used on arbitrary pro-
gram file attributes to provide a new view of the results from
aprevious selection. Such filters may be selectable by the user
or preconfigured in the system.

Turning to FIGS. 3 through 9, example screen displays of
one embodiment of system 100 are shown. FIGS. 3 through 9
illustrate the processing of an example unknown program file
inventory by the successive selection of a frequency range
(FIG. 3), a vendor (FIG. 4), a product (FIG. 5), a product
version (FIG. 6), a unique file identifier (FIG. 7), a unique
program file path (FIG. 8), and unique hosts (FIG. 9). The
attribute values for vendor, product, and product version in
this example scenario are generically indicated as Vendor A,
B, and C, Products A, B, and C, and Product Versions 8.0, 9.0,
and 10.0 in FIGS. 3-9. Note that the following description
with reference to FIGS. 3-9 will reference FIG. 1 and FIGS.
2 A and 2B to describe various processing flows and example
network elements that may be used in this example scenario.

In one embodiment, screen displays shown in FIGS. 3-9
may be provided on user interface 172 of console 170, for an
authorized user to evaluate a program file inventory and make
appropriate selections based on particular needs. Initially, a
frequency analysis may be performed on program file inven-
tory 180, which may identify a desired set of program files,
such as unknown program files in hosts 110 of the network.
FIG. 3 illustrates an example screen display 300 of frequency
ranges of the unknown program files. In screen display 300, a
bar graph illustrates program file counts 304 bucketed by a
plurality of frequency ranges 302. In this example, five fre-
quency ranges (i.e., 0-20%, 20-40%, 40-60%, 60-80%, and
80-100%) are shown, which indicate the prevalence of the
unknown program files on hosts 110 within the network of
FIG. 1. In accordance with this example scenario, a subset
(i.e., 152 program files) of the plurality of program files of
program file inventory 180 were found on 60-80% of hosts
110. As previously discussed herein, however, other fre-
quency measures may be used in the frequency analysis (e.g.,
prevalence in business units, geographical locations, etc.).

From screen display 300, a user may use input mechanism
174 to select a particular frequency range (e.g., using a mouse
to click on a bar associated with a particular frequency range).
In this example scenario, the 60-80% frequency range is
selected, having a program file count of 152. Once the
60-80% frequency range is selected, screen display 400 of
FIG. 4 may be displayed on user interface 172 providing
information on the subset of all unknown program files on
60-80% of hosts, bucketed by a first (primary) file attribute
A, : vendor. The subset is bucketed by specific vendors asso-
ciated with the program files. A vendor pie chart 402 displays
the bucketing results with three vendor buckets: Vendor A
bucket 404 having a count of 18, Vendor B bucket 406 having
a count of 50, and Vendor C bucket 408 having a count of 84.
Each of the three vendor buckets represents a respective ven-
dor grouping of program files. Options box 409 provides two
options to the user: Option 1 allows the user to select a
particular vendor bucket to further analyze the respective
vendor grouping of program files, or Option 2 allows the user
to select an action to be performed on all of the program files
in the selected subset of program files (e.g., the program files
in the selected 60-80% frequency range).

From screen display 400, a user may use input mechanism
174 to select a particular vendor bucket (e.g., using amouse to
click on a bucket or pie slice corresponding to Vendor A,
Vendor B, or Vendor C). In this example scenario, Vendor C
bucket 408 is selected, having a program file count of 84.
Once Vendor C bucket 408 is selected, screen display 500 of

20

40

45

14

FIG. 5 may be displayed on user interface 172 providing
information for all unknown program files on 60-80% of
hosts that are associated with Vendor C and bucketed by a
second (secondary) file attribute A,: product. Thus, the Ven-
dor C grouping of program files represented by the Vendor C
bucket 408 is bucketed by specific products associated with
the program files. A product pie chart 502 displays the buck-
eting results with three product buckets: Product A bucket
504 having a count of 43, Product B bucket 506 having a
count of 18, and Product C bucket 508 having a count of 23.
Each of the three product buckets represents a respective
product grouping of program files. Options box 509 provides
two options to the user: Option 1 allows the user to select a
particular product bucket to further analyze the respective
product grouping of program files, or Option 2 allows the user
to select an action to be performed on all of the program files
in the selected Vendor C grouping of program files.

From screen display 500, a user may use input mechanism
174 to select a particular product bucket (e.g., using a mouse
to click on a bucket or pie slice corresponding to a particular
product). In this example scenario, Product A bucket 504 is
selected, having a program file count of 43. Once Product A
bucket 504 is selected, screen display 600 of FIG. 6 may be
displayed on user interface 172 providing information for all
unknown program files on 60-80% of hosts, that are associ-
ated with Vendor C and Product A, and bucketed by a third
(tertiary) file attribute A;: product version. Thus, the Product
A grouping of program files represented by Product A bucket
504 is bucketed by specific product versions associated with
the program files. In this example scenario, product version
pie chart 602 displays the bucketing results with three product
version buckets: Product Version 8.0 bucket 604 having a
count of 6, Product Version 9.0 bucket 606 having a count of
13, and Product Version 10.0 bucket 608 having a count of 24.
Each of the three product version buckets represents a respec-
tive product version grouping of program files. Options box
609 provides two options to the user: Option 1 allows the user
to select a particular product version bucket to further analyze
the respective product version grouping of program files, or
Option 2 allows the user to select an action to be performed on
all of the program files in the selected Product A grouping of
program files.

From screen display 600, a user may use input mechanism
174 to select a particular product version bucket (e.g., using a
mouse to click on a bucket or pie slice corresponding to a
particular product version). In this example scenario, the
Product Version 8.0 bucket 604 is selected, having a program
file count of 6. In this example scenario, only three file
attributes (i.e., vendor, product, and product version) are used
to analyze and bucket the unknown program files. Therefore,
once Product Version 8.0 bucket 604 is selected, screen dis-
play 700 of FIG. 7 may be displayed on user interface 172
providing unique program file identifiers (e.g., hashes) for all
unknown program files on 60-80% of hosts that are associated
with Vendor C, Product A, and Product Version 8.0. Thus, a
file identifier is determined for each program file in the Prod-
uct Version 8.0 grouping of program files represented by
Product Version 8.0 bucket 604. An identifier list 702 of
unique program file identifiers may be displayed with a cor-
responding count list 704 of unique path counts for each
program file identifier. Options box 709 provides two options
to the user: Option 1 allows the user to select a particular
unique file identifier to obtain further information about the
program files associated with the selected unique program file
identifier, or Option 2 allows the user to select an action to be
performed on all of the program files in the selected Product
Version 8.0 grouping of program files.



US 9,075,993 B2

15

From screen display 700, a user may use input mechanism
174 to select a particular unique program file identifier (e.g.,
using a mouse to click on a particular program file identifier).
In this example scenario, program file identifier 706 (i.e.,
Hash  f3a643e085f00cbfc9251925¢e8e0aftef34a%¢ef) is
selected, and has a corresponding unique path count of 3.
Once program file identifier 706 is selected, screen display
800 of FIG. 8 may be displayed on user interface 172 provid-
ing unique program file paths associated with program file
identifier 706, which is on 60-80% of hosts and associated
with Vendor C, Product A, and Product Version 8.0. A path list
802 of unique file paths may be displayed with a correspond-
ing frequency list 804 indicating the frequency of each unique
program file path found on hosts 110. Options box 809 pro-
vides two options to the user: Option 1 allows the user to
select a particular unique file path to obtain further informa-
tion about the program files associated with the selected
unique file path, or Option 2 allows the userto select an action
to be performed on all of the program files represented by the
previously selected unique program file identifier 706.

From screen display 800, a user may use input mechanism
174 to select a particular unique file path (e.g., using a mouse
to click on a particular program file path). In this example
scenario, program file path 806 (i.e., C:\Program
Files\Product A\VC\bin\link.exe) is selected, having a corre-
sponding frequency count of 6. Once unique program file
path 806 is selected, screen display 900 of FIG. 9 may be
displayed on user interface 172 of console 170 providing
identification of unique hosts associated with unique program
file path 806, which is on 60-80% ofhosts and associated with
Vendor C, Product A, Product Version 8.0, and unique pro-
gram file identifier 706. A host list 902 of unique hosts may be
displayed with corresponding selection boxes 904. Options
box 909 provides the user the ability to select an action to be
performed and to select particular ones of the identified hosts
by marking corresponding selection boxes 904. The chosen
action may be performed on the program files associated with
the selected hosts, the selected unique file path 806, and the
selected file identifier 706.

FIGS. 3-9 illustrate one embodiment of the processing flow
of system 100 for evaluating and remediating unknown pro-
gram files, in which three file attributes (i.e., vendor, product,
and product version) are used to successively group the pro-
gram files of a selected frequency range. In other embodi-
ments, however, the file attributes used for bucketing may
include any intrinsic and/or extrinsic file attributes and any
desired number, combination, and order of such file
attributes. Thus, for example, two, three, four, or more file
attributes may be used each time a selected set of program
files is processed, and such file attributes could include either
or both extrinsic and intrinsic attributes. In addition, system
100 can be configured to allow a user to select particular file
attributes for grouping. For example, from frequency screen
300 and any subsequent file attribute screens (e.g., screens
400 through 600), another option may be provided for the
user to select particular file attributes to use for grouping a
selected bucket. While the system described herein includes
processing in response to user selections, system 100 may
also be configured to automatically select particular fre-
quency and count buckets, providing the results of such pro-
cessing to auser in the form of a screen display, a report, afile,
and/or any other suitable mechanism for communication.

Although the embodiments described herein have referred
to evaluating unknown program files, it will be apparent that
other sets of program files (including known program files)
may be evaluated and/or remediated using system 100. For
example, it may be useful to evaluate trusted (e.g.,

10

15

20

25

30

35

40

45

50

55

60

65

16

whitelisted) program files when trying to determine the per-
vasiveness of known safe software that is currently not
licensed in a particular network. In another example, system
100 could be used to determine a metric indicating how
uniformly the known or trusted software is distributed
throughout a network, throughout a defined segment of a
network, throughout a cluster of computers in a network, and
the like. Finally, the options for managing or remediating
selected groupings of program files, file identifiers, file paths
and/or file hosts, as shown in FIGS. 3-9, are for example
purposes only. It will be appreciated that numerous other
options, at least some of which are detailed herein in this
Specification, may be provided in any combination with or
exclusive of the options of FIGS. 3-9.

Software for achieving the grouping and managing opera-
tions outlined herein can be provided at various locations
(e.g., the corporate IT headquarters, end user computers, dis-
tributed servers in the cloud, etc.). In some embodiments, this
software could be received or downloaded from a web server
(e.g., in the context of purchasing individual end-user
licenses for separate networks, devices, servers, etc.) in order
to provide this system for selectively grouping and managing
program files. In one example implementation, this software
is resident in one or more computers sought to be protected
from a security attack (or protected from unwanted or unau-
thorized manipulations of data).

In various embodiments, the software of the system for
selectively grouping and managing program files in a com-
puter network environment could involve a proprietary ele-
ment (e.g., as part of a network security solution with McA-
fee® ePolicy Orchestrator (ePO) software, McAfee® Anti-
Virus software, McAfee® HIPS software, McAfee®
Application Control software, etc.), which could be provided
in (or be proximate to) these identified elements, or be pro-
vided in any other device, server, network appliance, console,
firewall, switch, information technology (IT) device, distrib-
uted server, etc., or be provided as a complementary solution
(e.g., in conjunction with a firewall), or otherwise provisioned
in the network.

In certain example implementations, the grouping and
managing activities outlined herein may be implemented in
software. This could be inclusive of software provided in
server 130 (e.g., program grouping module 150, remediation
modules 160, etc.) and in other network elements (e.g., hosts
110) including program files to be grouped and managed.
These elements and/or modules can cooperate with each
other in order to perform the grouping and managing activi-
ties as discussed herein. In other embodiments, these features
may be provided external to these elements, included in other
devices to achieve these intended functionalities, or consoli-
dated in any appropriate manner. For example, some of the
processors associated with the various elements may be
removed, or otherwise consolidated such that a single proces-
sor and a single memory location are responsible for certain
activities. In a general sense, the arrangement depicted in
FIG. 1 may be more logical in its representation, whereas a
physical architecture may include various permutations,
combinations, and/or hybrids of these elements.

In various embodiments, some or all of these elements
(e.g., server 130, hosts 110) include software (or reciprocat-
ing software) that can coordinate, manage, or otherwise coop-
erate in order to achieve the grouping and managing opera-
tions, as outlined herein. One or more of these elements may
include any suitable algorithms, hardware, software, compo-
nents, modules, interfaces, or objects that facilitate the opera-
tions thereof. In the implementation involving software, such
a configuration may be inclusive of logic encoded in one or



US 9,075,993 B2

17

more tangible media, which may be inclusive of non-transi-
tory media (e.g., embedded logic provided in an application
specific integrated circuit (ASIC), digital signal processor
(DSP) instructions, software (potentially inclusive of object
code and source code) to be executed by a processor, or other
similar machine, etc.).

In some of these instances, one or more memory elements
(e.g., memory 134) can store data used for the operations
described herein. This includes the memory element being
able to store software, logic, code, or processor instructions
that are executed to carry out the activities described in this
Specification. A processor can execute any type of instruc-
tions associated with the data to achieve the operations
detailed herein in this Specification. In one example, proces-
sor 132 could transform an element or an article (e.g., data)
from one state or thing to another state or thing. In another
example, the activities outlined herein may be implemented
with fixed logic or programmable logic (e.g., software/com-
puter instructions executed by a processor) and the elements
identified herein could be some type of a programmable pro-
cessor, programmable digital logic (e.g., a field program-
mable gate array (FPGA), an erasable programmable read
only memory (EPROM), an electrically erasable program-
mable read only memory (EEPROM)), an ASIC that includes
digital logic, software, code, electronic instructions, flash
memory, optical disks, CD-ROMs, DVD ROMs, magnetic or
optical cards, other types of machine-readable mediums suit-
able for storing electronic instructions, or any suitable com-
bination thereof.

Any of the memory items discussed herein should be con-
strued as being encompassed within the broad term ‘memory
element.” Similarly, any of the potential processing elements,
modules, and machines described in this Specification should
be construed as being encompassed within the broad term
‘processor.” Each of the computers may also include suitable
interfaces for receiving, transmitting, and/or otherwise com-
municating data or information in a network environment.

Note that with the numerous examples provided herein,
interaction may be described in terms of two, three, four, or
more network elements. However, this has been done for
purposes of clarity and example only. It should be appreciated
that the system can be consolidated in any suitable manner.
Along similar design alternatives, any of the illustrated com-
puters, modules, components, and elements of FIG. 1 may be
combined in various possible configurations, all of which are
clearly within the broad scope of this Specification. In certain
cases, it may be easier to describe one or more of the func-
tionalities of a given set of flows by only referencing a limited
number of network elements. It should be appreciated that the
system of FIG. 1 (and its teachings) is readily scalable and can
accommodate a large number of components, as well as more
complicated/sophisticated arrangements and configurations.
Accordingly, the examples provided should not limit the
scope or inhibit the broad teachings of system 100 as poten-
tially applied to a myriad of other architectures.

It is also important to note that the operations described
with reference to the preceding FIGURES illustrate only
some of the possible scenarios that may be executed by, or
within, the system. Some of these operations may be deleted
or removed where appropriate, or these steps may be modi-
fied or changed considerably without departing from the
scope of the discussed concepts. In addition, the timing of
these operations may be altered considerably and still achieve
the results taught in this disclosure. The preceding opera-
tional flows have been offered for purposes of example and
discussion. Substantial flexibility is provided by the system in
that any suitable arrangements, chronologies, configurations,

5

10

15

20

25

30

35

40

45

55

65

18

and timing mechanisms may be provided without departing
from the teachings of the discussed concepts.

What is claimed is:

1. A method, comprising:

determining a plurality of frequency ranges, wherein a
particular frequency range corresponds to a proper sub-
set of a plurality of program files, wherein the plurality
of program files is associated with a greylist of program
files, wherein the proper subset of the plurality of pro-
gram files is associated with one or more hosts of a
plurality of hosts in a network environment, wherein
each of the one or more hosts includes at least one
occurrence of at least one program file of the proper
subset, and wherein the particular frequency range indi-
cates a prevalence of each program file of the proper
subset across the plurality of hosts;

receiving an indication that the particular frequency range
corresponding to the proper subset is selected;

identifying a plurality of first groupings of the proper sub-
set in response to receiving the indication that the par-
ticular frequency range corresponding to the proper sub-
set is selected, wherein a particular first grouping of the
plurality of first groupings includes one or more pro-
gram files of the proper subset based on a value of a
primary attribute of the one or more program files
included in the particular first grouping;

generating a set of first counts corresponding, respectively,
to the plurality of first groupings, wherein a particular
first count represents an aggregate amount of program
files in the particular first grouping;

receiving an indication that the particular first grouping is
selected; and

receiving an indication that an action is selected by a user
via a user interface, wherein the action includes blocking
execution of at least one program file identified in the
particular first grouping, or quarantining the at least one
program file identified in the particular first grouping,
wherein, if the particular first grouping and the action are
selected, the action is performed on the at least one
program file identified in the particular first grouping.

2. The method of claim 1, further comprising:

determining a unique identifier corresponding to the at
least one program file of the particular first grouping;
and

determining a file path count representing an aggregate
amount of one or more unique file paths associated with
the unique identifier, each of the one or more unique file
paths included on at least one of the one or more hosts of
the plurality of hosts.

3. The method of claim 2, further comprising:

identifying a first file path of the one or more unique file
paths; and

determining a host count representing an aggregate amount
ofhosts associated with the unique identifier and the first
file path.

4. The method of claim 1, further comprising:

identifying a plurality of second groupings from the par-
ticular first grouping, wherein a particular second group-
ing of the plurality of second groupings includes one or
more program files of the particular first grouping based
on a value of a secondary attribute of the one or more
program files included in the particular second group-
ing; and

generating a set of second counts corresponding, respec-
tively, to the plurality of second groupings, wherein a
particular second count represents an aggregate amount
of program files in the particular second grouping.



US 9,075,993 B2

19

5. An apparatus, comprising:

a program file grouping module;

amemory element for storing a program file inventory of a
plurality of program files associated with a plurality of
hosts in a network environment; and

a processor operable to execute instructions associated
with the program file grouping module and the memory
element, including:
determining a plurality of frequency ranges, wherein a

program files based on a third value of the primary
attribute, wherein the first value and the third value are

20

not equivalent, and wherein none of the one or more
program files of the first grouping are included in the one
or more other program files of the third grouping.

9. One or more non-transitory media that includes code for
execution and when executed by a processor is operable to
perform operations comprising:

determining a plurality of frequency ranges, wherein a
particular frequency range corresponds to a proper sub-
set of a plurality of program files, wherein the plurality

particular frequency range corresponds to a proper 10 . ! - L
subset of the plurality of program files, wherein the of program ﬁles is associated with a greylist qf program
plurality of program files is associated with a greylist files, Where.ln the proper subset of the plurality of pro-
of program files, wherein the proper subset of the gram .ﬁles is assoc.lated with one or more hosts of.a
plurality of program files is associated with one or plurality of hosts in a network environment, wherein
more hosts of the plurality of hosts, wherein each of 15 each of the one or more hosts includes at least one
the one or more hosts includes at least one occurrence occurrence of at least one program file of the proper
of at least one program file of the proper subset, and subset, and wherein the particular frequency range indi-
wherein the particular frequency range indicates a cates a prevalence of egch program file of the proper
prevalence of each program file of the proper subset subset across the plurality of hosts;
across the plurality of hosts; 20 receiving an indication that the particular frequency range
receiving an indication that the particular frequency corresponding to the proper subset is selected;
__range corresponding to the proper subset is selected; identifying a plurality of first groupings of the proper sub-
identifying a plurality of first groupings of the proper set in response to receiving the indication that the par-
subs.et in response to receiving the 1ndlcat.10n that the ticular frequency range corresponding to the proper sub-
particular frequency range corresponding to the 25 set is selected, wherein a particular first grouping of the
proper subset is selected, wherein a particular first plurality of first groupings includes one or more pro-
grouping of the plurality of first groupings includes gram files of the proper subset based on a value of a
one or more program files of the proper subset based primary attribute of the one or more program files
on a value of a primary attrlbute. of the one or more included in the particular first grouping;
program files included in the particular first grouping; 30 . ) .
generating a set of first counts corresponding, respec- generating a set of first counts co.rrespondmg, respect.lvely,
tively, to the plurality of first groupings, wherein a to the plurality of first groupings, wherein a particular
particular first count represents an aggregate amount first count represents an aggregate amount of program
of program files of the particular first grouping; files in the particular first grouping;
receiving an indication that the particular first grouping 35 receiving an indication that the particular first grouping is
is selected; and selected; and
receiving an indication that an action is selected by a receiving an indication that an action is selected by a user
user via a user interface, wherein the action includes viaauser interface, wherein the action includes blocking
blocking execution of at least one program file iden- execution of at least one program file identified in the
tified in the particular first grouping, or quarantining 40 particular first grouping, or quarantining the at least one
the at least one program file identified in the particular program file identified in the particular first grouping,
first grouping, wherein, if the particular first grouping wherein, if the particular first grouping and the action are
and the action are selected, the action is performed on selected, the action is performed on the at least one
gle at least one program file identified in the particular program file identified in the particular first grouping.
6. Therasltnﬁarl?;tﬁlsnff claim 5, wherein the primary attribute ¥ 10.The one or more non-transitory media of cle}im 9, the
is one of a vendor, a product, or a version of a product. pr.oc.ess.or being operable to perform further operations com-
7. The apparatus of claim 5, wherein the processor is oper- prsiig:
able to perform further instructions, comprising: generating, in succession, one or more sets of additional
identifying a plurality of second groupings from the par- 50 counts, each set of gdditional counts including a respec-
ticular first grouping, wherein a particular second group- tive count representing an aggregate amount of program
ing of the plurality of second groupings includes one or files of a respect.ive grogping of one or more program
more program files of the particular first grouping based files of a respective previous grouping,
on a value of a secondary attribute of the one or more wherein each of the respective counts is associated with a
program files included in the particular second group- 55 distinct value of a different file attribute.
1ng; e.lnd . 11. The one or more non-transitory media of claim 9, the
generating a set of Se?ond counts corr espgndmg, respec- processor being operable to perform further operations com-
tively, to the plurality of second groupings, wherein a prising:
particular second count represents an aggregate amount L . . . .
of program files in the particular second grouping. ¢  determining a unique identifier correspondlng to thf: at
8. The apparatus of claim 5, wherein the set of first counts least one program file of the particular first grouping;
includes a third count representing an aggregate amount of and
program files in a third grouping of one or more other pro- determining a file path count representing an aggregate
gram files of the particular proper subset, amount of one or more unique file paths associated with
wherein the third grouping includes the one or more other 65 the unique identifier, each of the one or more unique file

paths included on at least one of the one or more hosts of
the plurality of hosts.



US 9,075,993 B2

21

12. The one or more non-transitory media of claim 11, the
processor being operable to perform further operations com-
prising:

identifying a first file path of the one or more unique file

paths; and

determining a host count representing an aggregate amount

othosts associated with the unique identifier and the first
file path.

13. The one or more non-transitory media of claim 12, the
processor being operable to perform further operations com-
prising:

identifying each host associated with the unique identifier

and the first file path.

14. The one or more non-transitory media of claim 9, the
processor being operable to perform further operations com-
prising:

providing for display on a user interface the plurality of

frequency ranges; and

providing for display on the user interface the set of first

counts in response to receiving the indication that the
particular frequency range corresponding to the proper
subset is selected.

10

15

22

15. The one or more non-transitory media of claim 9, the
processor being operable to perform further operations com-
prising:

identifying a plurality of second groupings from the par-

ticular first grouping, wherein a particular second group-
ing of the plurality of second groupings includes one or
more program files of the particular first grouping based
on a value of a secondary attribute of the one or more
program files included in the particular second group-
ing; and

generating a set of second counts corresponding, respec-

tively, to the plurality of second groupings, wherein a
particular second count represents an aggregate amount
of program files in the particular second grouping.

16. The one or more non-transitory media of claim 9,
wherein the primary attribute is one of a vendor, a product, or
a version of a product.

#* #* #* #* #*



